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Problem 9-1. Suppose M is a smooth manifold, X ∈ X(M), and γ is a maximal
integral curve of X.

(a) We say γ is periodic if there is a number T > 0 such that γ(t + T ) = γ(t)
for all t ∈ R. Show that exactly one of the following holds:

• γ is constant.

• γ is injective.

• γ is periodic and nonconstant.

(b) Show that if γ is periodic and nonconstant, then there exists a unique positive
number T (called the period of γ) such that γ(t) = γ(t′) if and only if
t− t′ = kT for some k ∈ Z.

(c) Show that the image of γ is an immersed submanifold of M , diffeomorphic
to R, S1, or R0.

Solution. (a) Let the domain of γ be (a, b). Assume it is not constant nor injec-
tive. Let t < t′ be with γ(t) = γ(t′). Let T = t′ − t > 0. Then Theorem
9.12b tells us that

Dγ(t+T ) = Dγ(t) − T.

However, Dγ(t) is the same as Dγ(t+T ), so Dγ(t) must be R. On the other
hand, letting θ be the flow induced from X,

θ(s+ T, γ(t)) = θ(s, γ(t+ T )) = θ(s, γ(t)),

for all real s. This shows θ(γ(t)) = γ is periodic (and nonconstant, as we
wanted).

(b) There is T , the smallest positive number such that γ(t+ T ) = γ(t) for all t.

If it doesn’t exist, then there is an infimum T ∗ of those periods, and hence a
Cauchy sequence that converges to it. It is easy to see that if T1 and T2 are
in the set of periods, then so does |T1−T2|. Since the sequence is Cauchy we
conclude the infimum T ∗ must be zero.

Fix some valid time t0. Then γ(t0) is in every neighborhood of γ(t) in M ,
for every t, by choosing appropriately small period ε > 0 for the size of the
neighborhood. That is, we choose a neighborhood of γ(t) in M , which by
continuity contains γ(t − ε, t + ε) for some ε > 0. Then we can choose a
period p small enough such that t0 plus a multiple of p lies in (t− ε, t+ ε).

This conclusion contradicts the Hausdorff property of M , so we conclude
there is a smallest period.

Now it is easy to see that all other periods are just multiples of T , else we
can subtract T enough times to find a yet smaller period.

1



In particular, by the argument of (a) we know γ(t) = γ(t′) if and only if t− t′
is in the set of periods for γ. That is, T satisfies the property of the period.

To show unicity, just consider that another period kT , for integer k would
not divide (t+ T )− t, even though γ(t) = γ(t+ T ).

(c) If γ is constant, then the image of γ is diffeomorphic to R0.

If γ is nonconstant, its derivative never vanishes, by Prop. 9.12. This means
γ is a smooth immersion of the open interval J into M . If γ is injective, this
means it is an injective smooth immersion, and J (which is diffeomorphic to
R) is diffeomorphic to the image of γ by Prop. 5.18.

If γ is periodic and nonconstant, we can consider the smooth covering map

π : R→ S1, t 7→ e2πit/T ,

where T is the period as in (b). Since γ is constant on the fibers of π, we
must have a map γ̃ : S1 → M with γ̃ ◦ π = γ. Since γ(t) = γ(t′) if and only
if t− t′ = kT , γ̃ is injective.

Now since π is a local diffeomorphism, γ̃ is also a smooth immersion. By
Prop. 5.18, the image of γ is diffeomorphic to S1, as we wanted to show.

Problem 9-2. Suppose M is a smooth manifold, S ⊆M is an immersed subman-
ifold, and V is a smooth vector field on M that is tangent to S.

(a) Show that for any integral curve γ of V such that γ(t0) ∈ S, there exists
ε > 0 such that γ((t0 − ε, t0 + ε)) ⊆ S.

(b) Now assume S is properly embedded. Show that any integral curve that
intersects S is contained in S.

(c) Give a counterexample to (b) if S is not closed.

Solution. (a) Consider i : S ↪→ M the smooth immersion. There’s V tangent
to S, and there is U , a vector field in S that is i-related to V by Prop 8.23.
Given the integral curve γ of V through γ(t0), there is also an integral curve
of U through i−1(γ(t0)), which we call η. We choose a parametrization of η
so that i ◦ η(t0) = γ(t0). By Prop. 9.2, η is defined on a neighborhood of t0.

By Prop. 9.6, i ◦ η is an integral curve of V passing through γ(t0), and by
unicity of integral curves i ◦ η = γ in some neighborhood of t0. In particular
this shows there is ε > 0 with γ(t0 − ε, t0 + ε) = i ◦ η(t0 − ε, t0 + ε) ⊆ S.

(b) Assume that γ starts at p ∈ S. Assume by way of contradiction that γ is not
contained in S. Without loss of generality assume that there is a positive
time where γ is outside S (the negative case is handled similarly). Let t∗ be
the infimum of t > 0 such that γ(t) 6∈ S. By part (b) we must have that
this infimum is in the set itself, else γ(t∗) ∈ S and we can find a larger lower
bound. This means that γ(t∗/2, t∗) ⊆ S. Since S is closed,

γ(t∗) ∈ γ((t∗/2, t∗)) ⊆ γ(t∗/2, t∗) ⊆ S,

a contradiction. We conclude the infimum doesn’t exist and the image of γ
is contained in S.

(c) Consider the open unit disk in R2, and the Euler vector field. Any radial
maximal integral curve intersects the disk, but is not contained in it.
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Problem 9-4. For any integer n ≥ 1, define a flow on the odd-dimensional sphere
S2n−1 ⊆ Cn by θ(t, z) = eitz. Show that the infinitesimal generator of θ is a
smooth nonvanishing vector field on S2n−1. [Remark: case n = 2, the integral
curves of X are the curves γz of Problem 3-6, so this provides a simpler proof that
each γz is smooth.]

Solution. If the flow is θ we have θ̇(z)(0) = ieitz(0) = iz 6= 0. This shows the
infinitesimal generator of θ is a smooth nonvanishing vector field on S2n−1.

Problem 9-5. Suppose M is a smooth, compact manifold that admits a nowhere
vanishing smooth vector field. Show that there exists a smooth map F : M → M
that is homotopic to the identity and has no fixed points.

Solution. Since M is compact, the nowhere vanishing smooth vector field V gen-
erates a complete flow. This also gives that each θt : M →Mt = M is a diffeomor-
phism homotopic to the identity with homotopy θ:

The map will be injective because θt(p) = θt(q) implies p = q. It will be surjective
because θ−t(p) maps to p. And it is a local diffeomorphism because

θt ◦ θ−t = Id

θ−t ◦ θt = Id .

Since all points are regular points for V , we cover M with regular coordinate cubes

(s1, ..., sn) where in each, Vp =
∂

∂s1

∣∣∣
p
. Then for each cube we consider even smaller

(of half side) regular coordinate cubes so that in each we can move some ti time
forward in the flow and not have any fixed points (that is, θti |Ci does not have
fixed points, where Ci are the smaller cubes).

By compactness of M , we can choose finitely many of these cubes Ci to cover M .
Let t = min ti, and

θt : M →M

will be by construction a smooth map homotopic to the identity θ0 with no fixed
points.

Obs: we can say more, that it will be a smooth isotopy of M with no fixed points.

Problem 9-6. Prove the escape lemma. Suppose M is a smooth manifold and
V ∈ X(M). If γ : J → M is a maximal integral curve of V whose domain J has
a finite least upper bound b, then for any t0 ∈ J , γ([t0, b)) is not contained in any
compact subset of M .

Solution. Suppose there is t0 such that γ[t0, b) is precompact. Then let K be
its closure. One can now cover K with precompact coordinate balls. Then one
can also consider the same neighborhoods but with half the radii. These are also
pre-compact. Since these also cover K, we can take finitely many, and call them
U1, ..., Um.

Now we consider a bump function ψ : M → R such that it is one on
⋃m

1 Uj , and
supported on

⋃m
1 U2

j , where U2
j are the original precompact neighborhoods.

In this construction ψV is now a compactly supported smooth vector field of M ,
thus generating a complete flow.

Since the two vector fields agree on
⋃m

1 Uj , we conclude they generate the same
flow there. In particular, in

⋃m
1 Uj , V and ψV should generate the same integral
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curve through γ(t0) (with translations to make sure that γ̃(t0) = γ(t0)). We can
consider now γ̃(b), which will be in

γ̃(t0, b) ⊆ γ(t0, b) ⊂ K ⊂ ∪mi Uj ,

so that γ̃ extends γ further. This contradicts the maximality of γ. We conclude
γ[t0, b) is not contained in any compact subset of M .

Problem 8-4. Let M be a smooth manifold with boundary. Show that there
exists a global smooth vector field on M whose restriction to ∂M is everywhere
inward-pointing, and one whose restriction to ∂M is everywhere outward-pointing.

Solution. We show it for inward-pointing, and the outward pointing is achieved by
multiplying the field by −1.

We cover the boundary of M with regular coordinate half-balls, and then consider
the same regular coordinate half-balls with half the radius.

In each of the larger regular coordinate half-balls we can define a smooth vector

field by Vi =
∂

∂xn
. Then in each, we consider the bump function which is 1 in

the closure of the smaller half-ball, and vanishes outside the larger half-ball. If
we denote the half ball by Ui and the larger by U2

i , we have a bump function
bi : M → R which is 1 on Ui and 0 outside U2

i .

Then biVi becomes a smooth vector field on M which is inward pointing in ∂M∩Ui.

We now consider the open cover of M consisting of Ui and Mr∂M , and a partition
of unity subordinate to it, denoted ψi : M → R.

We claim V =
∑
ψibiVi is everywhere inward-pointing.

For every p ∈ ∂M , the vector field becomes
∑k
i=1 ψiVi, where U1, ..., Uk are the

patches that contain p. Since each (Vi)p is inward pointing, we have a sum of
inward pointing (or zero) tangent vectors, which must then be inward-pointing
also.

Problem 9-7. Let M be a connected smooth manifold. Show that the group of
diffeomorphisms of M acts transitively on M : that is, for any p, q ∈M , there is a
diffeomorphism F : M →M such that F (p) = q. [Hint: first prove that if p, q ∈ Bn
(the open unit ball in Rn), there is a compactly supported smooth vector field on
Bn whose flow θ satisfies θ1(p) = q.]

Solution. Let p and q be points in the unit ball in Rn. Take coordinates for it

such that q − p is parallel to the xn-axis. Let V = q − p = |q − p| ∂
∂xn

for every

point of the ball. Then it is clear this will generate a complete flow in the ball,
and that θ1(p) = q. To make it compactly supported, consider the bump function
b : Rn → R that is 1 on the smallest closed ball containing both p and q (so radius
max |p|, |q|) and vanishes outside Bn. Then bV is the vector field we’re looking for.

For the smooth connected manifold M , we take a smooth path γ : I → M from p
to q, and cover it with finitely many regular coordinate balls whose center lies in
the path, by compactness of I. Then we can order these by their centers, and call
them U1, ..., Uk. We must have that Ui and Ui+1 intersect, so we can take points
in the intersection of adjacent coordinate balls, so p = p0 ∈ U1, p1 ∈ U1 ∩ U2,
..., pk = q ∈ Uk. From the construction on Bn above we can build Vi, smooth
vector fields in M , compactly supported in Ui, such that the flow θi they generate
is complete and satisfy (θi)1(pi−1) = pi.
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The composition
(θk)1 ◦ (θk−1)1 ◦ · · · ◦ (θ1)1 : M →M

is a diffeomorphism, and it brings p to q, as we wanted.

Problem 9-11. Prove Theorem 9.24:

(Boundary Flowout Theorem) Let M be a smooth manifold with nonempty
boundary, and let N be a smooth vector field on M that is inward-pointing at
each point of ∂M . There exist a smooth function δ : ∂M → R+ and a smooth
embedding Φ : Pδ →M , where

Pδ = {(t, p) : p ∈ ∂M, 0 ≤ t < δ(p)} ⊆ R× ∂M,

such that Φ(Pδ) is a neighborhood of ∂M , and for each p ∈ ∂M the map t 7→ Φ(t, p)
is an integral curve of N starting at p.

Solution. Since N is smooth on ∂M , at every p there is a regular coordinate chart
ϕ : U → Hn such that N ◦ ϕ−1 has an extension to a smooth vector field on a
neighborhood of Hn.

Since Np 6= 0, we can choose the chart and the neighborhood such that N̂ has only
regular points in this neighborhood of Hn.

By Theorem 9.20, considering the embedded hypersurface

{xn = 0} = ϕ(U ∩ ∂M) = S,

and the flow θ : D → Rn of N̂ which has N̂p 6∈ TpS, we have a smooth positive
function δ : ϕ(U ∩ ∂M) → R+ and a domain Oδ ⊆ O ⊆ D ∩ (R × S) such that
Φ = θ|Oδ is a diffeomorphism onto an open submanifold of Rn (containing S).

If we consider instead Pδ = {(t, p) : p ∈ S, 0 ≤ t < δ(p)} ⊆ Oδ, we can show that
Φ(Pδ) ⊆ Hn.

In fact, if for some (t, q) ∈ Pδ, Φ(t, q) is in the lower half-space, then the integral
curve θ(q) : [0, δ(p))→ Rn, which starts at q with upward-pointing tangent vector
(in our coordinates an inward-pointing vector in Tq∂M corresponds to an upward-
pointing vector in Tϕ(q)Rn) would have to return to the boundary. At the first
such point N would have to be tangent to ∂M or outward-pointing.

In addition, the paragraph above indicates that no point in the image of Oδ r Pδ
is in Hn. A negative time t with θ(t, q) in {xn ≥ 0} would have to return to the
boundary {xn = 0} before or at time 0, which would imply that N is outward-
pointing or tangent to ∂M at the first such point.

This shows that Φ sends Pδ diffeomorphically to Φ(Oδ) ∩ Hn, which is an open
submanifold of Hn containing its boundary (since Φ(Oδ) is open in Rn containing
{xn = 0}).

Sending it back to M , we showed the existence of a P̃δ = (Id×ϕ−1)(Pδ) ⊆ R×(U∩
∂M) associated to a smooth function δ ◦ ϕ : U ∩ ∂M → R+, a smooth embedding

ϕ−1 ◦Φ ◦ (Id×ϕ) : P̃δ →M such that its image is a neighborhood of U ∩ ∂M , and
we showed also that for each p ∈ U ∩ ∂M the map t 7→ ϕ−1 ◦ Φ ◦ (Id×ϕ)(t, p) is
an integral curve of N starting at p (because t 7→ Φ(t, p) is an integral curve of N̂
in Hn starting at p).

We can do this process for every point in the boundary of M , and find an open
cover Ui of ∂M with the respective diffeomorphisms Φi : Pδi → Ui and smooth
functions δi : Ui ∩ ∂M → R+.

If a point of the boundary p lies in the intersection of Ui and Uj , then by uniqueness
of the integral curve of N starting at p (when it exists), Φi(t, p) and Φj(t, p) agree
on their common domain.
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This shows we can glue the Φi together into a single map Φ on
⋃
i

Pδi ⊆ R× ∂M ,

containing {0} × ∂M .

1) It will automatically satisfy that t 7→ Φ(t, p) is an integral curve starting at p.

This map will have a bijective differential at each point, inherited from the Φi.

We claim it will also inherit the injectivity.

If Φi(t, p) = Φj(t
′, p′) for (t, p) 6= (t′, p′), then we’d be having two integral curves

of N , one starting at p and the other at p′, which meet in a single point in Ui ∩Uj
(which cannot be in the boundary, lest t = t′ = 0, p = p′ since these curves do not
return to the boundary).

This implies these two curves agree on all of their image on IntM (up to translation
of domain by t′ − t, assuming t < t′) by the uniqueness of integral curves on a
manifold without boundary. At this point we are considering these two curves
being extended to the largest domain possible in IntM .

This scenario cannot happen because if we look at the curve around p in Ui coor-
dinates, it converges to p. This would mean in coordinates

p = lim
s→0

Φi(s, p) = lim
s→t′−t

Φj(s, p
′) = Φj(t

′ − t, p′)

and again we would have t′ − t = 0.

2) We conclude Φ is an injective smooth immersion of an n-dimensional manifold,
and must thus be a smooth embedding onto a neighborhood of ∂M .

We now just need to show that
⋃
i

Pδi has an open subset of the form

{(t, p) : p ∈ ∂M, 0 ≤ t < δ(p)} (∗)

for some positive smooth function δ : ∂M → R+. The restriction of Φ to such set
will also be a smooth embedding, and will automatically satisfy all the conditions
of the theorem.

Consider a partition of unity subordinate to the open cover Ui, which we denote
ψi.

Now we consider δ(p) =
∑
ψi(p)δi(p). This will clearly be positive and smooth.

It is evident that δ ≤ maxi δi so that Pδ ⊆
⋃
i

Pδi is an open submanifold containg

{0} × ∂M , as we wanted.
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